
Soil Mapping Using GIS, Expert Knowledge, and Fuzzy Logic

A. X. Zhu*, B. Hudson, J. Burt, K. Lubich, and D. Simonson

ABSTRACT bility arises mainly from the limitations of the discrete
data model and from the polygon-based mapping prac-A geographical information system (GIS) or expert knowledge-
tice employed in conventional soil surveys.based fuzzy soil inference scheme (soil-land inference model, SoLIM)

is described. The scheme consists of three major components: (i) a Zhu (1997a,b), Zhu and Band (1994), Zhu et al.
model employing a similarity representation of soils, (ii) a set of (1996), and Zhu et al. (1997) have proposed a SoLIM
inference techniques for deriving the similarity representation, and to overcome the limitations in conventional soil surveys.
(iii) use of the similarity representation. The similarity representation This approach combines the knowledge of local soil
allows the soil landscape to be considered as a continuum, and thereby scientists with GIS techniques under fuzzy logic to map
overcomes the generalization of soils in conventional soil mapping. soils. Although based on new technology, the model
The set of inference techniques is based on the soil factor equation

remains based on the soil factor equation of Dokuchaeivand the soil–landscape model. The soil–landscape concept contends
(Glinka, 1927) and Hilgard (Jenny, 1961) and the soil–that if one knows the relationships between each soil and its environ-
landscape model described by Hudson (1992). This soil–ment for an area, then one is able to infer what soil might be at each
landscape concept contends that if one knows the rela-location on the landscape by assessing the environmental conditions

at that point. Under the SoLIM, soil environmental conditions over tionships between each soil and its environment for an
an area are characterized using GIS or remote sensing techniques. area, then one is able to infer what soil might be at each
The relationships between soils and their formative environmental location on the landscape by assessing the environmen-
conditions are extracted from local soil experts or from field observa- tal conditions at that point. The SoLIM employs GIS
tions using a set of artificial intelligence techniques. The characterized and remote sensing techniques to characterize the soil
environmental conditions are then combined with the extracted rela- environmental conditions and uses a set of knowledge
tionships to derive a similarity representation of soils over an area.

acquisition techniques to extract soil–environmental re-It is demonstrated through two case studies that the SoLIM for soil
lationships from local soil experts or from field observa-survey has many advantages over the conventional soil survey ap-
tions. A set of inference techniques constructed underproach. Soil information products derived through the SoLIM are of
fuzzy logic links the characterized environmental condi-high quality in terms of both level of spatial detail and degree of

attribute accuracy. In addition, the scheme shows promise for improv- tions with the extracted relationships to infer the spatial
ing the efficiency of soil survey and subsequent updates through reduc- distribution of soils. This paper discusses how the SoLIM
ing time and costs of conducting a survey. However, the degree of addresses the key challenges faced in conventional soil
success of the SoLIM highly depends on the availability and quality survey, and assesses the potential of the SoLIM to im-
of environmental data, and the quality of knowledge on soil–environ- prove soil surveys. The limitations of conventional soil
mental relationships over the study area. survey approach are first discussed to provide a context

for the SoLIM, which is followed by an overview of the
SoLIM. The assessment of the SoLIM for soil survey

Detailed soil spatial and attribute information is through two case studies is described in the third part
required for many environmental modeling and of this paper.

land management applications (Beven and Kirkby,
1979; Burrough, 1996; Corwin et al., 1997; and Jury, Model and Process Limitations
1985). Currently, conventional soil surveys are the major of Conventional Soil Surveys
source of soil spatial information for these applications.

Conventional soil survey is also based on the soil–However, standard soil surveys were not designed to
landscape equation or concept (Hudson, 1992). To mapprovide the detailed (high-resolution) soil information
the soils over an area, field soil mappers will first estab-required by some environmental modeling (Band and
lish the soil–landscape model over the area through fieldMoore, 1995; Zhu, 1999a) and crop management appli-
investigation. The soil–landscape model captures thecations (Peterson, 1991). The format and detail of
relationships between the soils in the area and the differ-conventional soil maps are not compatible with other
ent landscape units. The soil mappers then manuallylandscape data derived from detailed digital terrain
map the spatial extents of different soils or combinationsanalyses and remote sensing techniques (Band and
of soils through photo interpretation (Fig. 1).Moore, 1995; Zhu, 1997a; Zhu, 1999a). This incompati-
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soil polygons based on soil scientists’ understanding of
the relationships between these environmental condi-
tions and the soil mapping units. The boundaries of soil
polygons are often initially delineated on a set of air
photos using a stereoscope, then field checked and com-
piled onto a base map. There are several major limita-
tions associated with this process. First, subtle yet im-
portant changes in environmental conditions may not
be easily observed due to the limitation of visual percep-

Fig. 1. Conventional soil mapping and its limiting factors tion, especially when trying to process many variables
simultaneously. This can result in small soil bodies not
being mapped. Secondly, visual interpretation is both aaccurate soil maps. Under this model, soils in the field

are represented through the delineation of soil polygons time-consuming and an error-prone process. One is very
likely to make mistakes after staring through a stereo-with each polygon depicting the spatial extent of a par-

ticular soil class (single-component mapping unit) or a scope for many hours. As a result, misinterpretations
can often occur during the soil boundary delineationgroup of commonly found classes (multiple-component

mapping unit). The first problem associated with this process. The process of transcribing soil polygon bound-
aries from a set of air photos to a base map is alsopolygon-based mapping practice is that it limits the size

of the soil body which can be delineated as a polygon time-consuming and error-prone, further degrading the
quality of soil maps. This process also forces soil scien-on a paper map. Soil bodies smaller than this size are

either ignored or merged into the larger enclosing soil tists to use most of their time performing cartographic
work, preventing them from fully investigating soils andbodies. This limitation forces soil scientists to create

multiple-component mapping units to express the inclu- their environment in the field. Finally, this entire soil
map production process must be repeated for each fu-sion of different soils in the polygon. However, the spatial

locations of these components cannot be shown in the ture soil survey update. This makes soil survey updates
very inefficient.map. The filtering of small soil bodies because of the

limitation of the polygon-based mapping techniques is As a result of these limitations, the current way of
conducting soil survey is very time-consuming. Therecalled generalization of soils in the spatial domain (Zhu,

1998, 2000). This spatial generalization can be very sig- are �0.9 billion ha in the USA. The current rate of soil
survey updating is �4 million ha yr�1. At this rate ofnificant and the soil bodies that are filtered out can

range from a few to hundreds of hectares or more de- production, 220 yr will be needed to update all of the
soil surveys in the USA. If the effort is doubled as morepending on the scale of the map.

The second limitation of the polygon-based mapping staff is shifted from initial soil surveys to updates, survey
update will still be at a century cycle (at least threepractice is that the polygons represent only the distribu-

tion of a set of prescribed soil classes (central concepts generations of soil scientists). A radical change is needed
to move soil survey to a more acceptable update rateof soils). To map soils, field soil scientists have to assign

individual soils in the field to one and only one of these and to a product that can be continually updated effi-
ciently and accurately.classes (referred to as Boolean Classification). Once

assigned to a class, the local soil is said to be typical of
that class; thus, the particular conditions of that soil The Soil-Land Inference Model
body are lost. Local soil scientists may know that the

Zhu (1997a, 1999b), Zhu and Band (1994), and Zhulocal soil differs from the central concepts of the as-
et al. (1996, 1997) developed a SoLIM to overcome thesigned class, but this expert knowledge cannot be con-
aforementioned limitations in conventional soil surveysveyed using polygon-based soil mapping. This approxi-
by combining the knowledge of local soil scientists withmation of local soil conditions by the central concept
GIS techniques under fuzzy logic for soil mapping. Thisof a prescribed soil class is referred to as generalization
approach consists of three major components: (i) a simi-of soils in the parameter domain (Zhu, 1998; Zhu, 2000).
larity model for representing soils as a continuum, (ii)This generalization forces soil scientists to map soil spa-
a set of automated inference techniques for mappingtial variation as a step function, which means that soil
soils using the similarity model, and (iii) a set of proce-variation appears only at the boundaries of soil polygons.
dures for deriving soil information products from theField experience tells us that although abrupt changes
similarity model. This section briefly describes each ofof soils over space do exist, changes in soil properties
these three components since detailed discussion onoften take a more gradual and continuous form than
each of the components can be found in respective refer-what the polygon-based mapping practice allows.
ences cited below.The manual soil map production process limits soil

scientists’ ability to update soil surveys rapidly and accu-
Representing Soil as Continuum:rately. During the manual production process soil scien-
The Similarity Modeltists first detect different soil formative environments

through visual interpretation of geological maps, topo- Zhu (1997a) developed a soil similarity model to over-
graphic maps and air photos. The spatial extents of these come the two generalizations in representing soils. The

similarity model has two parts: (i) the raster representa-soil formative environments are then used to delineate
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tion of soils in the spatial domain and (ii)the similarity
representation of soils in the parameter domain. Under
raster GIS data modeling, an area can be represented
by many small squares (pixels). The pixel size can be
very small; it is often 30 m on each side, although much
finer pixel sizes are possible. With raster representation,
generalization of soils in the spatial domain can be
greatly reduced and spatial details of soil variation can
be represented at fine spatial resolution. As will be
seen, resolution is dictated by the quality of the digital
database, not by manpower resources, nor by an a priori
decision regarding map scale.

The similarity representation of soils in the parameter
domain is based on fuzzy logic (Zhu, 1997a). Under
fuzzy logic, the soil at a given pixel can be assigned to Fig. 2. The similarity model. Soil bodies are presented as pixels in

spatial domain and as similarity vectors in parameter domain.more than one soil class with varying degrees of class
assignment (Burrough et al., 1992; Burrough et al., 1997;

terms of the similarity between a typical formative envi-McBratney and De Gruijter, 1992; McBratney and
ronment for a soil class and a particular (local) environ-Odeh, 1997; Odeh et al., 1992). These degrees of class
ment for a given location, S�:assignment are referred to as fuzzy memberships. This

fuzzy representation allows a soil at each pixel to bear a S� � � f1(E)dt [1]partial membership in each of the prescribed soil classes.
Each fuzzy membership is regarded as a similarity mea- In Eq. [1], t is time; f1 is the relationship of soil develop-

ment to the formative environment; and E, which gener-sure between the local soil and the typical case of the
ally includes variables describing climate, topography,given class. All of these fuzzy memberships are retained
parent materials, and vegetation factors. Of course, op-in this similarity representation, which forms an n-ele-
erational considerations require that we represent for-ment vector (soil similarity vector, or fuzzy membership
mative environments in some way; precisely speaking,vector), Sij (S1

ij, S2
ij, . . . , Sk

ij, . . . , Sn
ij ), where n is the num-

S� is therefore a measure of similarity between the char-ber of prescribed soil classes and the kth element, Sk
ij, in

acterized soil formative environment for the central con-the vector represents the similarity value between the
cept of a given soil class and the characterized soil for-soil at pixel (i, j) and soil class k. With this similarity
mative environment at a given local location. Statedrepresentation, the local soil at a given pixel is no longer
differently, because the similarity measure of a local soilnecessarily approximated by the central concept of a
to the central concept of a particular soil cannot beparticular class but can be represented as an intergrade
directly determined without examining the local land-to the set of prescribed classes. This method of represen-
scape in prohibitively expensive detail, we approximatetation, which allows the local soil to take property values
the true similarity (S) by S� under the SoLIM. It isintermediate to the modal (typical) values of the pre-
difficult, if not impossible, to explicitly describe the tscribed classes, largely circumvents the problem of gen-
factor at every location across landscape. Furthermore,eralization in the parameter domain.
information on t is often implicitly expressed in otherBy coupling this similarity representation with a raster
formative environmental factors such as topographicGIS data model, soils in an area are represented as an
position or the knowledge of local soil experts. There-array of pixels with soil at each pixel being represented
fore, under the SoLIM implementation Eq. [1] is simpli-as a soil similarity vector (referred to as a raster soil
fied to:database, Fig. 2). In this way, soil spatial variation can

be represented as a continuum in both the spatial and S� � f(E) [2]
parameter domains.

Data on soil formative environmental conditions (E)
can be derived using GIS techniques (Fig. 3) (Zhu etPopulating the Similarity Model: Automated Soil
al., 1996; McSweeney et al., 1994). The variables usedInference under Fuzzy Logic
to characterize the soil-formative environmental condi-

The similarity model only provides added flexibility tions are decided based on the discussion between the
for representing soil spatial variation. The degree of person who conducts the knowledge acquisition (knowl-
success in using this model depends on how the model edge engineer) and the local soil expert(s). For a given
is populated or how the soil similarity values in the area, the local soil expert would provide an initial list
vector are determined at each pixel. The SoLIM deter- of environmental variables to be considered. This list is
mines the soil similarity values using the soil factor equa- modified by the knowledge engineer based on the data
tion outlined by Dokuchaeiv (Glinka, 1927) and Hilgard availability and the importance of the variables im-
(Jenny, 1961) and the soil–landscape model described pacting the pedogenesis in the study area. Because of
by Hudson (1992). This concept contends that soil is the the data availability and difference in pedogenesis over
result of the interaction of its formative environmental different areas, there is no fixed list of environmental

variables to be included. The list varies from area tofactors over time. In SoLIM that idea is expressed in
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Fig. 3. The automated soil inference under fuzzy logic is based on the concept that soil (S) is a function ( f ) of its formative environment (E).

area. Common data layers used to describe topography pixel in the GIS database and repeats the process of
deriving the soil similarity vector for that pixel. Wheninclude elevation, slope aspect, slope gradient, profile

and planform curvatures (Zevengergen and Thorne, all pixels in the GIS database are exhausted, a similarity
representation of soils (a raster soil database) for the1987), upstream drainage area and wetness index (Quinn

et al., 1993), distance to streams, and distance to ridges. entire area has been derived.
Bedrock and surficial geology data are necessary, but

Deriving Soil Information Products: Usesoften not available at the appropriate level of detail.
of the Similarity ModelThe deficiency of geological data poses a major problem

(it is a problem for manual mapping, too). Other data The information represented under the similarity
layers could include vegetation information derived model can be used to develop maps in a variety of
from remotely sensed data such as leaf area index (LAI), formats. For example, one can derive a spatially detailed
tree canopy coverage (Nemani et al., 1993), etc. soil type map (such as soil series maps) by hardening

The soil–environmental relationships ( f) can be ap- the similarity vector (Zhu, 1997a). The hardening is
proximated by the expertise of local soil scientists (Zhu accomplished by assigning each location the label of the
and Band, 1994; Zhu, 1999b) or using techniques such soil class that has the highest membership value in the
as artificial neural networks (ANN) (Zhu, 1998; Zhu, similarity vector for that point. For example, a similarity
2000), case-based reasoning (CBR) (Kolodner, 1993, vector at a point might be (0.2, 0.4, 0.1, 0.3) with values
p. 668; Schank, 1982, p. 234; Shi and Zhu, 1999), and representing membership in Soils A, B, C, and D, re-
supervised fuzzy classification (Wang, 1990). The ac- spectively. Hardening results in the soil at the point to
quired soil–environmental relationships can then be be labeled as Soil B, because the local soil bears the
combined with data characterizing the soil formative highest membership in Soil B. The membership values
environment conditions to infer S� under fuzzy logic in the similarity vector can also be used to measure the
(Zhu and Band, 1994; Zhu et al., 1996). uncertainty associated with this hardening process and

The actual process of inferring S� is automated (Zhu to assess the validity of assigning the particular label to
and Band, 1994). The acquired soil–environmental rela- the local soil (Zhu, 1997b).
tionships are stored in a database (referred to as a Using the same data, one can derive a spatially contin-
knowledgebase). Data characterizing soil formative en- uous soil property map for an area (Zhu et al., 1997;
vironments are stored in a GIS database. A set of infer- Zhu, 1997a). Although other ways of generating soil
ence techniques constructed under fuzzy logic (collec- property maps from the similarity representation are
tively called the fuzzy inference engine) is used to link possible, Zhu et al. (1997) used the following linear and
the knowledgebase with the GIS database to derive soil additive weighting function to estimate A-horizon depths.
similarity vectors (Fig. 4). In general, for pixel (i, j),
the inference engine takes the data on soil formative
environment conditions for that pixel from the GIS da- Vij �

�
n

k�1
Sk

ij · Vk

�
n

k�1

Sk
ij

[3]
tabase and combines the GIS data with the soil-environ-
ment relationships for soil category k from the knowl-
edgebase to calculate the similarity value of the local Where Vij is the estimated soil property value at location
environment to the typical environment of soil category (i, j); Vk is the modal (typical) value of a given soil
k, S�k

ij, which is then used as a surrogate to Sk
ij. Once all property of soil category k, and n is the total number

of the soil categories are exhausted by the inference of prescribed soil categories for the area. This function
engine the soil similarity vector (Sij) for this pixel is is based on the assumption that if the local soil formative

environment characterized by a GIS resembles the envi-created. The inference engine then moves onto the next
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Fig. 4. Soil inference process. The knowledgebase contains knowledge on soil–environmental relationships. The geographical information system
(GIS) database contains spatial data on soil formative environmental conditions. The fuzzy inference engine combines the relationships in
the knowledge base with the spatial data in the GIS database to produce a raster soil database for the study area.

ronment of a given soil category, then the property The area is not cultivated. The environmental condi-
values of the local soil should resemble the property tions for the areas were characterized at 30-m resolution
values of the candidate soil category. The resemblance and the following environmental variables were used
between the environment for soil at (i, j) and the envi- (Zhu et al., 1996): elevation, slope gradient, slope aspect,
ronment for soil category k is expressed as Sk

ij, which is profile and planform curvatures, forest canopy coverage
used as an index to measure the level of resemblance (Nemani et al., 1993), and bedrock geology.
between the soil property values of the local soil and The Raffelson study site is about 350 ha (about 865
those of soil category k. acres) in size and located on the edge of the “driftless

area” of southwestern Wisconsin that has remained free
Assessment of the Soil-Land Inference Model of direct impact from Pleistocene era continental gla-

ciers. The Raffelson area is a typical ridge and valleyThe SoLIM was tested in two watersheds; one in
terrain of the driftless area with relatively flat, narrowthe Lubrecht Experimental Forest of western Montana
ridges, moderate to steep sideslope and wide, flat val-(Zhu et al., 1996) and the other (the Raffelson water-
leys. Relief from ridge to valley is about 100 m (Fig.shed) in eastern part of La Crosse County of Wisconsin.
5b). About 50% of area has slope gradient below 20%The Lubrecht study site is about 3600 ha (about 8900
with high gradient values around 50%. Most ridges andacres) in size and in a mountainous area with a strong
valleys have been under cultivation since the latter partenvironmental gradient (Fig. 5a). The elevation ranges
of the 19th century. Current cropping is typically cornfrom 1160 to 1930 m. About 45% of area has slope gra-
(Zea maize L.), small grain, and alfalfa (Medicago sativadient over 30%, with steepest gradients well over 90%.
L.) in 5 to 8 yr rotations. Sideslopes are generally for-Most of the mountain slopes are forested. Much of the
ested, though some have been cleared for pasturing.timber is second growth. There have been no large

wild fires in the area since 1937 (Nimlos, 1986, p. 36). Natural forests are southern deciduous. Oak (Quercus

Fig. 5. Three-dimensional perspective views of study areas. (a) The Lubrecht study area with elevation ranging from 1160 to 1930 m; (b) The
Raffelson study area with elevation varying from 250 to 410 m (Light toned areas are high elevation).
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Fig. 6. Maps of soil series distribution in Lubrecht, MT. The SoLIM-derived map depicts soil spatial variation in much greater detail than the
conventional soil map. The conventional soil map is of order level 2.

L.) and hickory (Carya L.) forests are common on dry- different from their respective major side slopes on
mesic sites that were originally oak savannahs; maple which these small draws are situated. This moisture dif-
(Acer L.) and basswood (Tilia L.) forests occur under ference is particularly acute for major south-facing
more mesic conditions such as north-facing slopes. Many slopes and the small draws on them that do not face
forests have been significantly altered by land-use prac- direct south. Evaporation on these major south-facing
tices (e.g., logging, grazing, conifer planting). The envi- slopes is strong because of their direct south exposure
ronmental conditions were characterized using a 10-m and moisture conditions on these slopes are often very
digital elevation model recently produced by USGS. poor. On the other hand, the small draws that face
The environmental variables used were: elevation, slope away from direct south have more favorable moisture
gradient, slope aspect, profile and planform curvatures, conditions for soil formation. As a result, soils in these
wetness index (Quinn et al., 1993), geology, and per- small draws are often better developed and different
centage of area drained from a given bedrock area (ap- from those on the major south-facing slopes. These dif-
proximated using the upstream drainage area measure ferences in soils between the small draws and the major
[Quinn et al., 1993]). slopes are depicted on the SoLIM-derived map but not

The results from these case studies are discussed here on the conventional soil map because of the scale limita-
to provide an assessment of the effectiveness of the tion of an order-2 soil map.
SoLIM in deriving detailed and accurate soil spatial Field observations further verified that the SoLIM-
information. The assessment will be conducted through derived soil series map is of higher accuracy than the
the comparison of the products derived from the SoLIM conventional soil map. Table 1 summarizes the results
with these derived from conventional soil maps. from comparing field observations against the results

from SoLIM and the conventional soil map. A total of
Assessment of the Quality of Products 64 field sites were investigated. The sites were selected

from SoLIM in two ways, through transecting and pointing inspection
(Zhu et al., 1997). The transecting was conducted inThe Lubrecht Study Case
such a way that it covered major environmental varia-Two soil products (soil type map and soil property
tions with the shortest distance. For point sampling, amap) are examined in this case study. As mentioned
stratified sampling strategy was used (Zhu et al., 1997,above, soil similarity vectors were hardened to produce
p. 528). At each site, a few pits were dug, and soil seriesa soil map. The SoLIM-derived soil map (created
at the site was determined by examining the soils atthrough hardening) and the conventional soil map over
these pits. Of the 64 sites, SoLIM inferred the soil seriesthe Lubrecht study area are shown in Fig. 6. It can be
correctly at 52 sites (81% accuracy), while the conven-observed from the two maps that the SoLIM-derived
tional soil map identified only 39 sites (61% accuracy)soil map contains much greater spatial detail than the
correctly. There were sites at which the soil series fromconventional soil map of the area. In a semi-arid to
SoLIM differed from those derived from the conven-semihumid area like western Montana, moisture condi-
tional soil map (referred to as mismatches). For 71%tion is a dominant factor in the soil forming process.
of these mismatches, the soil series from SoLIM matchedThe moisture conditions in the small draws (shallow
the field observations.but very wide gullies, ravines or valleys) are often very

To further assess the SoLIM, two soil property maps
depicting the spatial variation of A-horizon depth wereTable 1. Comparison of soil series inferred from soil-land infer-

ence model (SoLIM) and derived from the soil map against derived—one from the similarity representation of
the field observations for the Lubrecht study area. SoLIM using Eq. [3], and the other from the conven-

Overall Mismatches tional soil map (Zhu et al., 1997). Figure 7 compares
Total Total the two soil A-horizon depth maps. It can be clearly

Correct samples Percentage Correct samples Percentage seen that the depth map inferred from SoLIM shows a
SoLIM 52 64 81 17 24 71 more continuous spatial variation than the depth map
Soil map 39 64 61 4 24 17 from the conventional soil map, which shows the
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Fig. 7. Maps of soil A-horizon depth in Lubrecht, MT. The SoLIM-derived depth map shows a gradual variation of soil A-horizon depth whereas
the depth map from the conventional soil map shows abrupt changes at the boundaries of soil polygons.

changes occurring only at the boundaries of the soil nose positions. It was difficult to separate them in con-
polygons. Changes in soil property values occurring only ventional mapping because of the scale at which the
at the boundaries of soil polygons are not realistic for area was mapped, thus they were mapped a complex.
this study area. Field observations of A-horizon depths Using the SoLIM, these two can be mapped individually.
were made at 33 sites (no depth observations were mea- The third difference is the extent of soil series Orion
sured at the other 31 sites). These observed depths sug- (Coarse-silty, mixed, superactive, nonacid, mesic Aquic
gest that the inferred depths at these 33 sites matched Udifluvents). Orion typically occurs on valley bottom
the observed depths better (with R2 � 0.602) than did with very gentle slope (�1% sloping). The slope gradi-
the depths derived from the conventional soil map (with ent ranges from 1 to 3% for most of the valley bottoms
R2 � 0.436) (Zhu et al., 1997). over the Raffelson study area and most of the area

should be mapped as series Kickapoo (coarse-loamy,
The Raffelson Study Case mixed, superactive, nonacid, mesic Typic Udifluvents)

or series Council as the SoLIM did. However, on theA soil map produced as a case study for using the
conventional soil map the majority of the valley bottomSoLIM in an area with moderate relief is shown in Fig.
was mapped as Orion. This could be the result of inabil-8. A conventional soil map produced from a recent
ity of the soil mapper to determine the slope gradientorder-2 survey update is shown in Fig. 9. There three
via stereoscopes over flat areas.major differences between the two maps. The first is

Ninety-nine field sites were collected for the Raffel-the position of boundary between soil series Valton
son study area over the Fall of 2000 to see how the two(Fine-silty, mixed, superactive, mesic Mollic Paleudalfs-
soil maps compare with each other at these sites. Twosubgroup) and soil series Lamoille (fine, mixed, mesic
sampling strategies were employed; transecting andTypic Hapludalfs). Valton is a soil that occurs on the
pointing sampling. Four transects were made to coverridge tops while Lamoille occurs on the shoulder posi-
the transition between major landscape units (such astions of these ridges. The shoulder positions are often
ridge top to valley bottom and from concave draw posi-narrow over this area. The wider Lamoille strip on the
tion to convex nose slope) and 53 of the 99 sites wereconventional soil map could be the result of difficulty in
on these transects. The remaining 46 sites were scatteredmanually determining the boundaries of slope shoulders
to cover the major landscape units (such as ridge tops,via stereoscopes.
side slopes, valley bottoms). Of the 99 sites, the SoLIMThe second difference is the individual components of
inferred the soil series correctly at 83 sites (�83.8%),the complexes (Dorerton [loamy-skeletal, mixed, active,
while the conventional soil map mapped 66 sites cor-mesic Typic Hapludalfs]–Elbaville [fine-loamy, mixed,
rectly (66.7%) (for the complexes, we considered thesuperactive, mesic Glossic Hapludalfs], Gaphill [coarse-
soil map mapped correctly if the observed soil series isloamy, siliceous, active, mesic Typic Hapludalfs]–Rock-
one of the components of the complex). Over the areasbluff [Mesic, coated Typic Quartzipsamments], Council
of complexes, the SoLIM achieved 89% accuracy (33[Coarse-loamy, mixed, superactive, mesic Typic Haplu-
out of 37), while the soil map only achieved 73%.dalfs]–Elevasil [Coarse-loamy, siliceous, active, mesic

The higher quality of soil information products fromUltic Hapludalfs]–Norden [Fine-loamy, mixed, superac-
SoLIM is due to a number of advantages the SoLIMtive, mesic Typic Hapludalfs]) were separately mapped
has over the conventional soil mapping. First, environ-on the map from SoLIM. The Dorerton–Elbaville com-
mental variation can be quantified in great detail withinplex, for example, contains two components. The Elba-
GIS because of the capability of digital data processingville component occurs on the linear to concave slopes

while the Dorerton component occurs on the convex and the ability to handle many variables simultaneously.
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Fig. 8. Distribution of soil series over the Raffelson area based on the SoLIM.

The availability of detailed data on soil formative envi- model allows local soil conditions to be expressed at
pixel resolution, thus allowing small map unit compo-ronments makes it possible to greatly reduce soil inclu-

sions and misinterpretations. Second, the soil similarity nents in the landscape to be portrayed at a level of de-

Fig. 9. Distribution of soil series over the Raffelson area based on a recent order 2 update.
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tail impossible in conventional 2nd- and 3rd-order soil soil–environmental relationships from soil mapmaking
will liberate soil scientists from time-consuming map-maps. Third, the fuzzy logic used in the soil similarity

model allows the soil at a pixel to be expressed as an making tasks and allow them to focus on what they do
best; studying soils and discovering soil–environmentalintergrade rather to be approximated by only one refer-

ence soil type. In other words, fuzzy logic allows the relationships.
Maintaining knowledge continuity. A large portionproperties of a local soil to be more accurately es-

timated. of local expertise is lost each year as experienced local
soil scientists retire. Obviously, it is desirable to retain
this expertise to maintain continuity of knowledge onAssessment of the Process of Soil Survey
soil–environmental relationships between different gen-Using SoLIM
erations of local soil scientists. In the SoLIM, knowledge

In addition to its capability of producing high quality of soil–environmental relationships is represented ex-
soil information products, the SoLIM has several other plicitly, and can serve as an important resource for new
advantages over the conventional approach in terms of generations of soil scientists in their efforts of building
the process of soil survey. soil–landscape models for their respectively responsible

Consistent mapping. The automated soil mapping regions. This not only shortens the time for new soil
process employed in SoLIM enables one to apply the scientists to come up to speed in conducting soil surveys,
soil–landscape model consistently across the landscape. but also increases the consistency of soil–landscape
As a result, soil maps produced from SoLIM over areas models between generations of soil scientists.
using a same soil–landscape model will be consistent Digital products. The output from the fuzzy inference
with each other, which will aid in soil interpretation. engine is already in digital format. The soil data can be

Rapid soil survey updates. Since both the GIS data- directly used in GIS or mapping applications without
base and the knowledgebase for a given area are stored going through the tedious digitization process, which is
in a digital environment, the SoLIM can produce new expensive and may also degrade the quality of the final
versions of the raster soil database for an area very products because of possible errors introduced in the
rapidly. This can be done in a matter of hours or days digitization and attribute tabulation process.
rather than over months or years as in the current survey
process. The ability to quickly update soil spatial data- Assessment of the Applicability and Limitation

of SoLIM for Soil Surveybases allows soil surveys to keep up with the rapidly
changing spatial data processing technology and the ad- The quality of soil information produced using the
vancement in our understanding of soils. For example, SoLIM depends on the quality of two major inputs; the
a knowledgebase can be reapplied to produce updated environmental conditions characterized in GIS and
soil surveys when higher resolution GIS or additional the soil–landscape model extracted from local soil ex-
remotely sensed data become available. Once knowl- perts. The quality of the former can be interpreted as
edgebases are constructed, they are readily available the ability to characterize the environmental variation
and thus can be studied and conveniently updated by soil related to soil formation. This ability is related to three
scientists. Updated knowledgebases can be reapplied major factors; the availability of the needed environ-
to produce soil surveys reflecting the most up-to-date mental data (such as surficial geology map), the quality
understanding of soils. and level of detail of the environmental data if they are

Reduced cost. Since the GIS databases, the knowl- available (such as the quality and resolution of digital
edgebases, and the fuzzy inference engine are all reus- elevation data), and the ability to define the desired
able, most of the investment during the initial soil survey environmental conditions (such as upslope area, head-
or initial update retains its value. The modular design water regions) using GIS. Based on our experience, the
of SoLIM (compiling the GIS database, acquiring SoLIM worked well in areas where there is a strong
knowledge, and performing inference, see Fig. 4) allows environmental gradient (such as the Lubrecht study
each module to be updated independently in subsequent area), with a USGS level 1 30 m DEM and a 1:24 000
updates. Future soil survey updates will need only to scale geology map. For area with a moderate environ-
improve the GIS databases, update the knowledgebases, mental gradient (such as the Raffelson study area), a
and perfect the inference engine. Instead of periodically 10 m DEM with a 1:24 000 or larger scale geology map
redoing everything, we will be able to continuously im- will be needed for the SoLIM to succeed. We are cur-
prove different parts of the system. This not only will rently applying the SoLIM in areas with a very gentle
save human and material resources and foster efficiency, environmental gradient to examine the performance of
but also will improve the scientific basis of soil surveys. SoLIM over these low relief areas.

More focused soil scientists. The modular design in The soil–landscape model is equally important be-
SoLIM divides the whole soil survey process into tasks cause it dictates where each soil type will be mapped.
with each task being performed by the most suitable pro- Currently, the SoLIM needs local soil experts to provide
fessionals. For example, compiling GIS databases and this model. Based on our experience, an experienced
performing inference are most suitable for profession- field soil mapper is needed for providing this model.
als in GIS or information sciences. Acquiring knowledge We are developing techniques to acquire (construct)
about soil–environmental relationships is best suited to soil–landscape models from nonhuman sources (such as

field points, existing soil maps, etc.).the talent of soil scientists. Decoupling the study of
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